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Abstract. In fusion reactions, the Coulomb barrier selects particles from the high-momentum part of the
distribution. Therefore, small variations of the high-momentum tail of the velocity distribution can produce
strong effects on fusion rates. In plasmas several potential mechanisms exist that can produce deviations
from the standard Maxwell-Boltzmann distribution. Quantum broadening of the energy-momentum dis-
persion relation of the plasma quasi-particles modifies the high-momentum tail and could explain the
fusion-rate enhancement observed in low-energy nuclear reaction experiments.

PACS. 05.20.Dd Kinetic theory – 25.60.Pj Fusion reactions – 51.10.+y Kinetic and transport theory of
gases – 52.70.Nc Particle measurements

1 Introduction

Many-body collisions broaden the relationship between
energy and momentum of quasi-particles: a distribution
of momenta, which can have long tails, characterizes a
quasi-particle with a given energy. Therefore, the momen-
tum distribution can be very different from the one ob-
tained using a sharp correspondence between energy and
momentum [1]. Plasmas are typical environments where
this effect can be important.

Fusion processes select high-momentum particles that
are able to penetrate the Coulomb barrier and are,
therefore, extremely sensitive probes of the distribution
tail [2–5].

This broadening of the interacting particle energy-
momentum dispersion relation has been proposed re-
cently [6,7] as a possible explanation of the strong en-
hancement of the observed low-energy rate of the reaction
d(d, p)t in deuterated metal target [8–12].

In this paper we study the details of this quantum
broadening effect using a simple and effective expression
for the distributions. In particular, we determine the re-
gion of the distribution responsible of the effect. Our

a e-mail: massimo.coraddu@ca.infn.it
b e-mail: marcello.lissia@ca.infn.it
c e-mail: giuseppe.mezzorani@ca.infn.it
d e-mail: piero.quarati@polito.it

method is applied to the specific case of the enhancement
observed in the d(d, p)t reaction rate.

2 Charged particle distribution in plasma

We consider two species (1 and 2) of interacting charged
particles with mass, velocity, momentum, energy and den-
sity: m1,2, v1,2, p1,2, E1,2, n1,2. Their fusion reaction rate
is r = (1 + δ12)−1n1n2〈σvrel 〉 where the reaction rate per
particle is:

〈σvrel 〉 =
∫

d3p1

∫
d3p1 Φ1(p1)Φ2(p2)σvrel ; (1)

Φ1,2(p) are the momentum distributions of particles 1 and
2 and vrel = |v1 − v2| is their relative velocity.

The charged-particle fusion cross section σ is conve-
niently expressed as

σ(εp) =
S(εp)

E
exp

(
−

√
EG

εp

)
, (2)

where S(εp) is the astrophysical factor as function of
εp = 1

2µv2
rel = p2

rel

2µ with µ the reduced mass and EG =
2µc2(Z1Z

2
2απ)2 the Gamow energy. Note that the cross

section depends on the relative momentum p (to stress
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this point we write εp); only in special cases there is sharp
relation between the energy of the particle E and εp, for
instance for free particles E = εp is the kinetic energy in
the center of mass.

In general we may assume a relation of the form [1]:

δγ(E, εp) =
1
π

γ

(E − εp)2 + γ2
, (3)

where the width γ = �νcoll depends on the collision fre-
quency νcoll = nσcollvcoll.

Even when the energy distribution is Maxwellian
∝exp(E/kbT ) (we set the Boltzmann constant kb = 1),
the resulting momentum distribution

Φ(εp)dεp =
4πp2dp

∫ ∞
0

dE δγ(E, εp)e−E/T

4π
∫ ∞
0

p2dp
∫ ∞
0

dE δγ(E, εp)e−E/T
(4)

can be non-Maxwellian. We consider the case of a
Maxwellian energy distribution, which is relevant for the
deuteron distribution in metals that is discussed in the
next section. A more general Fermi distribution, rele-
vant for high-density environments, yields analogous ef-
fects and, in particular, a power-law tail for the momen-
tum distribution.

For the sake of concreteness let us consider a Coulom-
bian collisional cross section, σcoll = e4/ε2p; the resulting
dispersion-relation width is

γ = �n
e4

ε2p

√
2E

m
=

(
ES

εp

)2

×
√

E

ES
× ES , (5)

where the collisional velocity vcoll =
√

2E/m has been
used, n is the density and m the mass of the colliding
particles, deuterons in the present case. For convenience
we have defined the energy scale

ES =
(me

m

)1/5
(

n

n0

)2/5

E0

=
(mp

m

)1/5
(

n

n0

)2/5

3.02649 eV, (6)

where me and mp are the electron and proton masses,
E0 = (1/2)α2mec

2 is the Rydberg energy, n0 = (2a0)−3 =
0.843542×1024 cm−3 a reference density with a0 the Bohr
radius.

Then the dispersion relation can be written as

δγ(E, εp) =
1

ESπ

(εp/ES)2
√

E/ES

(εp/ES)4(E/ES − εp/ES)2 + E/ES
,

(7)
and the momentum distribution is conveniently expressed
in terms of the scaled variable y = εp/(TE5

S)1/6:

Φ

(
εp

(TE5
S)1/6

,
T

ES

)
dεp = N

(
T

ES

)

× y5/2dy

∫ ∞

0

dx

√
xe−x

x + y4

(
y − x

(
T

ES

)5/6
)2 , (8)

with the normalization

N−1

(
T

ES

)
=

∫ ∞

0

dyy5/2

∫ ∞

0

dx

√
xe−x

x + y4

(
y − x

(
T

ES

)5/6
)2 . (9)

This distribution should be compared to the Maxwellian
one obtained when δγ(E, εp) = δ(E − εp)

ΦM (εp/T )dεp = dz
2√
π

√
ze−z (10)

with z = εp/T .
Using the scaled variable εp/(T 1/6E

5/6
S ), the distribu-

tion depends only on the adimensional parameter T/ES .
Both the distribution Φ(εp) and the thermal mean 〈σ vrel〉
can be obtained numerically. We have found an analytical
approximation for the important physical regime

T � ES (11)

that is sufficiently accurate and allows a better analysis.
In fact, since contributions to the integral for energies
x > 1 are exponentially suppressed, equation (11) im-
plies that the limit T/ES → 0 in equations (8) and (9) is
well-defined. In this limit the distribution becomes:

Φ0

(
εp

(TE5
S)1/6

)
dεp ≡ Φ

(
εp

(TE5
S)1/6

, 0
)

dεp

= N0y
5/2dy

∫ ∞

0

dx

√
xe−x

x + y6
, (12)

where

N−1
0 =

∫ ∞

0

dyy5/2

∫ ∞

0

dx

√
x e−x

y6 + x

=
π
√

2Γ (13/12)
3(1 +

√
3)

= 0.51946. (13)

Under condition (11) the distribution depends on the tem-
perature T and density n only through the single scale
parameter T 1/6E

5/6
S ∼ T 1/6n1/3, which replaces the tem-

perature T of the Maxwell-Boltzmann distribution.
An estimate of corrections to this limiting behavior

can be obtained by considering the leading corrections to
the normalization integral

N−1 (T/ES) = N−1
0 +

5πΓ (23/12)
9(
√

2 +
√

6)
(T/ES)5/6

+ O
(
(T/ES)5/3

)
(14)

= 0.519457 + 0.437082 (T/ES)5/6

+ O
(
(T/ES)5/3

)
. (15)
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In the limit of small and large εp the momentum distribu-
tion (12) behaves like

lim
εp→0

Φ0(y)dy = N0

√
πy5/2dy

(
1 −√

πy3 + 2y6 + O (
y9

))
(16)

lim
εp→∞ Φ0(y)dy = N0

√
πdy

2y7/2

(
1 − 3

2y6
+

15
4y12

+ O (
y−18

))
.

(17)

Approximations that retain the leading and next-to-
leading asymptotic behaviors of the distribution are

Φl(y)dy = N0

√
πy5/2dy

1
1 + 2y6

(18)

Φnl(y)dy = N0

√
πy5/2dy

1 + y6

1 +
√

πy3 + 5y6 + 2y12
. (19)

The linear combination of the two approximations
that maintains the normalization,

∫ ∞
0 dy(cΦl(y) + (1 −

c)Φnl(y)) =
∫ ∞
0 dyΦ0(y), reproduces Φ0(y) within 2%.

The most important lesson we learn from this analy-
sis is that the quantum broadening due to plasma effects
produces a distribution whose typical scale is (TE5

S)1/6

instead of T : these two scales can be very different.
For instance, deuterons, m = 2mp, at the density n =
4.38 × 1023 cm−3 have the energy scale ES ≈ 2.03 eV.
Therefore, at temperatures T1 = 2.44 × 10−2 eV and
T2 = 0.109 eV, which fulfil condition (11), the scales of
the modified distributions are E

5/6
S T

1/6
1 = 0.770245 eV

and E
5/6
S T

1/6
2 = 0.988481 eV, respectively.

This large shift of the particle distribution towards
higher energies is demonstrated in Figure 1, where we
show Φ0(εp) from equation (12) compared to the Maxwell-
Boltzmann distribution, equation (10), for the two tem-
peratures T1 and T2; the target deuteron density of refer-
ence [8] has been used as density n of colliding particles:
n = 4.38 × 1023 cm−3.

3 The low-energy D(D,P)T reaction rate

The d(d,p)t fusion reaction rate has been recently mea-
sured using deuterated metal targets in the 4−20 keV en-
ergy range [8–12]. At low energy these experiments have
found a considerable higher reaction rate than the cor-
responding one measured using gas targets. Low-energy
enhancements are usually explained in terms of electron
screening; however, the electron screening potential Ue

that would reproduce these measurements in deuterated
metals is of the order of hundreds of eV: this potential is
much higher than the adiabatic estimate for the maximal
screening potential Ue ≤ 28 eV.

The thermal motion of the target atoms is another
mechanism capable of increasing the reaction rate; how-
ever, the Maxwellian momentum distribution at the ex-
perimental temperatures gives a negligible effects [6,13].

The observation that large enhancements have been
observed in deuterated metals but not in insulators [10,12]

1. � 10�6 0.0001 0.01 1

0.001

0.1

10

1. � 10�6 0.0001 0.01 1

0.001

0.1

10

Fig. 1. The momentum distribution function Φ0(εp) in eV−1

(full line) and the Maxwellian one (dashed line) as functions
of εp for two different temperatures T1 = 10 ◦C = 0.0244 eV
(upper panel) and T2 = 1000 ◦C = 0.109 eV (lower panel)
with density n = 4.38 × 1023 cm−3.

has suggested a possible explanation based on effects of
the plasma of electrons in the metal [11,12]. This sim-
plified model with quasi-free valence electrons predicts
an electron screening distance of the order of the Debye
length RDeb =

√
kbT/(4πneff (Ze)2), where neff is the ef-

fective density of valence electrons that can be treated as
quasi-free. This approach reproduces both the correct size
of the screening potential Ue and its dependence on the
temperature: Ue ∝ T−1/2 [10,12].

The problem with this explanation is that the resulting
RDeb, for the actual experimental conditions, is about ten
times smaller than the Bohr radius a0; the mean number
of quasi-free particles in the Debye sphere NDeb, the so
called Debye number [14], is, therefore, much smaller than
one: NDeb = neff (4π/3)R3

Deb ≈ (4π/3)neff (a0/10)3 ≈ 3 ×
10−5. The picture of the Debye screening, which should
be a cooperative effect with many participating particles
(RDeb should be at least greater than the Wigner Seitz
radius, which is of the order of the Bohr radius), seems not
to be applicable and the observed increase of the d(d,p)t
reaction rate still missing a consistent explanation. An
additional technical inconsistency in the Debye screening
explanation [10,12] is the use of a non-degenerate formula
for the screening radius in a situation where the electrons
are degenerate.
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In this context, we apply the analysis presented in the
previous section to the discussion of a recent interesting
tentative explanation of these puzzling experimental rates,
which is based on the quantum-tail effect [6,7].

Since it is a good approximation of the experimental
situation to consider the projectile distribution monoen-
ergetic with a sharp relation between energy and momen-
tum δγ(Ebeam , εp) = δ(Ebeam − εp), the relative velocity
is function only of εpt and of the angle ϑ between pt and
the beam: v2

rel = 2(Ebeam + εpt − 2
√

Ebeamεpt cosϑ)/m.
Following the analysis of the previous section, target par-
ticles have a Boltzmann-Gibbs energy distribution with
a relation between energy and momentum that is broad-
ened by plasma quantum effects and it is given by equa-
tion (7). The effective momentum distribution of the tar-
get particles is, therefore, not Maxwellian but given by
equation (8). Substituting this distribution of target par-
ticles, the sharp monoenergetic distribution for projectile
particles, and the above relation for the relative velocity
in equation (1) the reaction rate per particle becomes

〈σ vrel 〉 =
∫

d3pt Φ(pt)σ vrel (20)

= 2πm
3/2
D

∫ +1

−1

d cosϑ

∫ ∞

0

dE

×
∫ ∞

0

dεpt

√
2εpt δγ(E, εpt) e−E/kbT (21)

=
1
2

∫ 1

−1

d cosϑ

×
∫ ∞

0

dεptΦ(εpt/(TE5
S)1/6, T/ES)σ vrel , σ vrel ,

σ vrel =
4 S(Ecm)
mD vrel

exp

(
−π

√
2EG

µv2
rel

)
,

where Ecm = µv2
rel/2 and µ = m/2. Since condition

T � ES is verified, we can use the simplified form in
equation (12)

〈σvrel 〉 =
1
2

∫ 1

−1

d cosϑ

∫ ∞

0

dεptΦ0(εpt/(TE5
S)1/6)σ vrel .

(22)
As we have analyzed in the previous section, the momen-
tum distribution resulting from the quantum broadening
with the chosen collisional cross section has two main fea-
tures: a peak at energies of the order of (TE5

S)1/6 instead
of T and a power-law tail that decreases as ε

−7/2
p instead

of the exponential cut-off. It is, therefore, physically in-
teresting to separate the contributions from the peak, the
high-momentum tail and the low-momentum part of the
distribution, so that we can understand which feature(s)
of the modified distribution give(s) important corrections
to the rate. To this purpose we define the peak of the tar-
get momentum distribution as 0.54(TE5

S)1/6 = εl < εp <

εh = 1.15(TE5
S)1/6: this region includes about 50% of the

particles and we call the corresponding contribution to the
reaction rate per particle 〈σ vrel〉C ; the contributions from
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Fig. 2. Reaction rate per particle (σ vrel)T=0 (left
panel) and the corresponding astrophysical factor S =

(σ vrel)T=0
mD
4

√
2Ebeam

mD
exp

(
π
√

2 EG
Ebeam

)
(right panel) for the

d(d, p)t reaction as function of the beam energy. The exper-
imental data [8] are compared with three theoretical curves:
bare nuclei (dashed line), screened nuclei with the adiabatic
potential Ue = 28 eV (dot-dashed line), and our calculation
that includes the quantum-tail thermal effect (solid line).

the low- (εp < εl: about 10% of the particles) and high-
momentum (εh < εp: about 40% of the particles) parts are
indicated with the subscript L and H .

〈σ vrel〉 = 〈σ vrel〉L + 〈σ vrel〉C + 〈σ vrel〉H . (23)

We have used S(ECM ) � S0 = 43 keV b (the error is
≤6% for Ebeam ≤ 10 keV): then the ϑ integral can be
done analytically in terms of the incomplete Gamma-Euler
function; the remaining integrations have been performed
using the Gauss-adaptive method.

The resulting rate is shown in Figure 2 as the thin
solid line. In the same figure are shown for comparison the
experimental data [8] and the other theoretical curves: the
thick solid line shows the rate for bare nuclei, while the
dot-dashed line shows the rate with electron screening in
the adiabatic limit, which should provide an upper limit
to the screening potential, fe = exp

(
π
√

EG

Ecm

Ue

2 Ecm

)
.

As it is apparent from Figure 2, the quantum-tail effect
is in fact capable to produce a strong enhancement of the
reaction rate, but this effect starts only below Ebeam ∼
2 keV; on the contrary the experimental excess starts at
energies two or three times higher.

From the analysis of the separate contributions of the
three regions (low, central or peak, and high) of the tar-
get momentum distribution (see Fig. 3), we observe that
the increase of 〈σ vrel〉 at low energies (Ebeam ∼ 2 keV),
shown in Figure 2, is caused mainly by the high momen-
tum particles in the power-law tail, the 〈σ vrel 〉H term: the
peak and the low-momentum region seem not contribute
to this increment in the present situation.
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Fig. 3. Contributions to the reaction rate per particle 〈σ vrel〉
coming from the three different regions of the target momen-
tum distribution: low-momentum region (dash-dotted line),
central or peak region (dashed line), and high-momentum or
tail region (solid line).

4 Conclusion

We have studied the effects of the quantum broadening
of the relation between energy and momentum due to a
specific collisional cross section. An important effect is the
considerable modification of the resulting momentum dis-
tribution:

(1) the central part of the distribution is shifted from T
to (TE5

S)1/6 where the energy scale ES , equation (6),
grows as n2/5 with the density n;

(2) the high-momentum tail decreases as a power ε
−7/2
p

instead of having an exponential cut-off (see Fig. 1).

We have applied this quantum-tail effect to nuclear fusion
processes between charged particles at sub-barrier energies
of the order of few keV and compared our results with
the experimental data relative to the d(d,p)t reaction with
deuterated target.

Our calculation shows that the quantum-tail effect pro-
duces an important increment of the observed reaction
rate enhancement at very low energies (∼2 keV). However,
this mechanism cannot reproduce the experimental rate
for deuterium, which has been found to increase already
at higher energies (∼6−8 keV), as shown in Figure 2.

We have also analyzed more in details the effect of the
modified momentum distribution on the reaction rate by
breaking up the contributions from target particle in three
regions: the low-momentum, the central or peak, and the
high-momentum region. The strong enhancement of the
rate is due essentially to the particles in this last region:
the high-momentum power-law tail of the distribution.

We are extending our results by using other collisional
cross sections and investigating the temperature depen-
dence of the mechanism.
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